วันอังคารที่ 26 สิงหาคม พ.ศ. 2551

เส้นใยแก้วนำแสง
ในอาคารบ้านเรือน ที่อยู่อาศัย สำนักงานอาคารอุตสาหกรรมต่างๆ ล้วนแล้วแต่ต้องใช้สายสัญญาณเพื่อเชื่อมโยงระบบสื่อสาร แต่เดิมสายสัญญาณที่นำมาใช้ ได้แก่ สายตัวนำทองแดง ปัจจุบันสายสัญญาณระบบสื่อสารมีความจำเป็นมากขึ้น โดยเฉพาะ ระบบการเชื่อมโยงเครือข่ายคอมพิวเตอร์ และมีแนวโน้มที่จะรวมระบบสื่อสาร อย่างอื่นประกอบเข้ามาในระบบด้วย เช่น ระบบเคเบิลทีวี ระบบโทรศัพท์ ระบบการบริการข้อมูลข่าวสารเฉพาะของบริษัทผู้ให้บริการต่างๆ ความจำเป็นลักษณะนี้ จึงมีผู้ตั้งคำถามว่า ถึงเวลา แล้วหรือยังที่จะให้อาคารที่สร้างใหม่ มีระบบเครือข่ายสายสัญญาณด้วยเส้นใยแก้วนำแสง หากพิจารณาให้ดีพบว่า เวลานั้นได้มาถึงแล้ว ปัจจุบันราคาของเส้นใยแก้วนำแสงที่เดินในอาคารมีราคาใกล้เคียงกับสาย UTP แบบเกรดที่ดี เช่น CAT 5 ขณะเดียวกันสายเส้นใยแก้วนำแสง ให้ประสิทธิภาพที่สูงกว่ามาก และรองรับการใช้งานในอนาคตได้มากกว่า สายยูทีพี (UTP) แบบ CAT 5 รองรับความเร็วสัญญาณ ได้ 100 เมกะบิตต่อวินาที และมีข้อจำกัดในเรื่องความยาวเพียง 100 เมตร ขณะที่สายใยแก้วนำแสงรองรับความถี่สัญญาณได้หลายร้อยเมกะเฮิรตซ์ และยังใช้ได้กับ ความยาวถึง 2,000 เมตร การพัฒนาในเรื่องต่างๆของเส้นใยแก้วนำแสงได้ก้าวมาถึงจุดที่จะนำมาใช้กันอย่างกว้างขวางแล้ว บทความนี้จึงขอนำเสนอเพื่อแสดงให้เห็นว่า เส้นใยแก้วนำแสงมีจุดเด่นอย่างไร มีแนวโน้มการใช้งานด้านใดบ้าง และที่สำคัญคือ จะได้เป็นข้อมูลสำหรับการศึกษา และทำความเข้าใจกับเส้นใยแก้วนำแสง เพื่อว่าจะได้เห็นข้อดีข้อเสีย รวมถึงแนวทางการนำมา ประยุกต์ให้คุ้มค่า โดยเฉพาะการมองแนวทางของเทคโนโลยีในระยะไกล จุดเด่นของสายใยแก้วนำแสง จุดเด่นของเส้นใยแก้วนำแสงมีหลายประการ โดยเฉพาะจุดที่ได้เปรียบสายตัวนำทองแดง ที่จะนำมาใช้แทนตัวนำทองแดง จุดเด่นเหล่านี้ มีการพัฒนามาอย่างต่อเนื่อง และดีขึ้นเรื่อยๆ ซึ่งประกอบด้วย
ความสามารถในการรับส่งข้อมูลข่าวสาร เส้นใยแก้วนำแสงที่เป็นแท่งแก้ว ขนาดเล็ก มีการโค้งงอได้ ขนาดเส้นผ่าศูนย์กลางที่ใช้กันมากคือ 62.5/125 ไมโครเมตร เส้นใยแก้วนำแสงขนาดนี้ เป็นสายที่นำมาใช้ภายในอาคารทั่วไป เมื่อใช้กับคลื่นแสงความยาวคลื่น 850 นาโนเมตร จะส่งสัญญาณได้มากกว่า 160 เมกะเฮิรตซ์ ที่ความยาว 1 กิโลเมตร และถ้าใช้ความยาวคลื่น 1,300 นาโนเมตร จะส่งสัญญาณได้กว่า 500 เมกะเฮิรตซ์ ที่ความยาว 1 กิโลเมตร และถ้าลดความยาวลงเหลือ 100 เมตร จะใช้กับความถี่ของสัญญาณมากกว่า 1 กิกะเฮิรตซ์ได้ ดังนั้นจึงดีกว่าสายยูทีพีแบบแคต 5 ที่ใช้กับสัญญาณได้ 100 เมกะเฮิรตซ์
กำลังสูญเสียต่ำ เส้นใยแก้วนำแสงมีคุณสมบัติในเชิงการให้แสงวิ่งผ่านได้ การบั่นทอนแสงมีค่าค่อนข้างต่ำ ตามมาตรฐานของเส้นใยแก้วนำแสง การใช้เส้นสัญญาณนำแสงนี้ใช้ได้ยาวถึง 2,000 เมตร หากระยะทางเกินกว่า 2,000 เมตร ต้องใช้ รีพีตเตอร์ทุกๆ 2,000 เมตร การสูญเสียในเรื่องสัญญาณจึงต่ำกว่าสายตัวนำทองแดงมาก ที่สายตัวนำทองแดงมีข้อกำหนดระยะทางเพียง 100 เมตร หากพิจารณาในแง่ความถี่ที่ใช้ ผลตอบสนองทางความถี่มีผลต่อกำลังสูญเสีย โดยเฉพาะในลวดตัวนำทองแดง เมื่อใช้เป็นสายสัญญาณ คุณสมบัติ ของสายตัวนำทองแดงจะเปลี่ยนแปลง เมื่อใช้ความถี่ต่างกัน โดยเฉพาะเมื่อใช้ความถี่ของสัญญาณที่ส่งในตัวนำทองแดง สูงขึ้น อัตราการสูญเสียก็จะมากตามแต่กรณีของเส้นใยแก้วนำแสง เราใช้สัญญาณความถี่มอดูเลตไปกับแสง การเปลี่ยน สัญญาณรับส่งข้อมูลจึงไม่มีผลกับกำลังสูญเสียทางแสง
คลื่นแม่เหล็กไฟฟ้าไม่สามารถรบกวนได้ ปัญหาที่สำคัญของสายสัญญาณ แบบทองแดง คือ การเหนี่ยวนำโดยคลื่นแม่เหล็กไฟฟ้า ปัญหานี้มีมาก ตั้งแต่เรื่องการรบกวนระหว่างตัวนำหรือเรียกว่า Crosstalk การไม่แมตซ์พอดีทางอิมพีแดนซ์ ทำให้มีคลื่นสะท้อนกลับ การรบกวนจากปัจจัย ภายนอกที่เรียกว่า EMI ปัญหาเหล่านี้สร้างให้ผู้ใช้ต้องหมั่นดูแล แต่สำหรับเส้นใยแก้วนำแสง แล้ว ปัญหาเรื่องเหล่านี้จะไม่มี เพราะแสงเป็นพลังงานที่มีพลังงานเฉพาะ และไม่ถูกรบกวนโดยคลื่นแม่เหล็กไฟฟ้า การเดินทาง ในเส้นแก้วก็ปราศจากการรบกวนของแสงจากภายนอก
น้ำหนักเบา เส้นใยแก้วนำแสงมีน้ำหนักเบากว่าเส้นลวดตัวนำทองแดง น้ำหนัก ของเส้นใยแก้วนำแสงขนาด 2 แกนที่ใช้ทั่วไป มีน้ำหนักเพียงประมาณ 20 ถึง 50 เปอร์เซนต์ของสาย UTP แบบ CAT 5
ขนาดเล็ก เส้นใยแก้วนำแสงมีขนาดทางภาคตัดขวางแล้ว เล็กกว่าลวดทองแดง มาก ขนาดของเส้นใยแก้วนำแสง เมื่อรวมวัสดุหุ้มแล้วมีขนาดเล็กกว่าสายยูทีพี โดยขนาดของสายใยแก้วนี้ใช้พื้นที่ประมาณ 15 เปอร์เซนต์ ของเส้นลวดยูทีพีแบบ CAT 5
มีความปลอดภัยในเรื่องข้อมูลสูงกว่า การใช้เส้นใยแก้วนำแสงมีลักษณะใช้ แสงเดินทางในข่าย จึงยากที่จะทำการแท๊ปหรือทำการดักฟังข้อมูล
มีความปลอดภัยต่อชีวิตและทรัพย์สิน การที่เส้นใยแก้วเป็นฉนวนทั้งหมด จึงไม่นำกระแสไฟฟ้า การลัดลงจร การเกิดอันตรายจากกระแสไฟฟ้าจึงไม่เกิดขึ้น
ความเข้าใจผิดบางประการ แต่เดิมเส้นใยแก้วนำแสงมีใช้เฉพาะในโครงการใหญ่ หรือใช้เป็นเครือข่ายแบบ Backbone เทคโนโลยี เกี่ยวกับเส้นใยแก้วนำแสงก็ยังไม่เป็นที่เปิดเผยมากนัก ทำให้เกิดความเข้าใจผิดบางประการเกี่ยวกับคุณสมบัติ และการประยุกต์ใช้งาน
แตกหักได้ง่าย ด้วยความคิดที่ว่า "แก้วแตกหักได้ง่าย" ความคิดนี้จึงเกิดขึ้น กับเส้นใยแก้วด้วย เพราะวัสดุที่ทำเป็นแก้ว ความเป็นจริงแล้วเส้นใยแก้วมีความแข็งแรง และทนทานสูงมาก การออกแบบ ใยแก้วมีเส้นใยห้อมล้อมไว้ ทำให้ทนแรงกระแทก นอกจากนี้ แรงดึงในเส้นใยแก้วยังมีความทนทานสูงกว่าสายยูทีพี หาก เปรียบเทียบสายใยแก้วกับสายยูทีพีแล้วจะพบว่า ข้อกำหนดของสายยูทีพีมีคุณสมบัติหลายอย่างต่ำกว่าเส้นใยแก้ว เช่น การดึงสาย การหักเลี้ยว เพราะลักษณะคุณสมบัติทางไฟฟ้า ที่ความถี่สูงเปลี่ยนแปลงได้ง่ายกว่า
เส้นใยแก้วนำแสงมีราคาแพง แนวโน้มทางด้านราคามีการเปลี่ยนแปลงราคา ของเส้นใยแก้วนำแสงลดลง จนในขณะนี้ยังแพงกว่าสายยูทีพีอยู่บ้าง แต่ก็ไม่มากนัก นอกจากนี้หลายคนยังเข้าใจว่า การติดตั้งเส้นใยแก้วนำแสงมีข้อยุ่งยาก และต้องใช้คนที่มีความรู้ความชำนาญ เสียค่าติดตั้งแพง ความคิดนี้ก็คงไม่จริง เพราะการติดตั้งทำได้ไม่ยากนัก เนื่องจากมีเครื่องมือพิเศษช่วยได้มาก เครื่องมือพิเศษนี้สามารถเข้าหัวสายได้โดยง่ายกว่าแต่เดิม มาก อีกทั้งราคาเครื่องมือก็ถูกลงจนมีผู้รับติดตั้งได้ทั่วไป เส้นใยแก้วนำแสงยังไม่สามารถใช้กับเครื่องคอมพิวเตอร์ที่ตั้งโต๊ะได้ ปัจจุบันพีซีที่ใช้ส่วนใหญ่ต่อกับแลนแบบ Ethernet ซึ่งได้ความเร็ว 10 เมกะบิต การเชื่อมต่อกับแลนมีหลายมาตรฐาน โดยเฉพาะในปัจจุบัน หากใช้ความเร็วเกินกว่า 100 เมกะบิต สายยูทีพีรองรับไม่ได้ เช่น ATM 155 เมกะบิต แนวโน้มของการใช้งานระบบเครือข่าย มีทางที่ต้องใช้แถบกว้างสูงขึ้นมาก โดยเฉพาะเมื่อต้องการให้พีซีเป็นมัลติมีเดียเพื่อแสดงผลเป็นภาพวิดีโอ การใช้เส้นใยแก้ว นำแสงดูจะเป็นทางออก พัฒนาการของการ์ดเชื่อมต่อที่ใช้กับพีซี โดยเฉพาะ ATM Card ก็ได้พัฒนาไปมาก เอทีเอ็มการ์ดใช้ความเร็ว 155 เมกะบิต ย่อมต้องใช้เส้นใยแก้วนำแสงรองรับ การใช้เส้นใยแก้วนำแสงยังสามารถใช้ในการรับส่งวีดีโอคอนเฟอเรนต์ หรือสัญญาณประกอบอื่นๆได้ดี
เส้นใยแก้วนำแสงมีกี่แบบ คุณสมบัติของเส้นใยแก้วนำแสงแบ่งแยกได้ตามลักษณะคุณสมบัติของตัวนำแสงที่มีลักษณะการให้แสงส่องทะลุในลักษณะอย่างไร คุณสมบัติของเนื้อแก้วนี้จะกระจายแสงออก ซึ่งในกรณีนี้การสะท้อนของแสงกลับต้องเกิดขึ้น โดยผนังแก้วด้านข้างต้องมีดัชนีหักเหของ แสงที่ทำให้แสงสะท้อนกลับ เพื่อลดการสูญเสียของพลังงานแสง วิธีการนี้เราแบ่งแยกออกเป็นสองแบบคือ แบบซิงเกิลโหมด และมัลติโหมด
Single Mode เป็นการใช้ตัวนำแสงที่บีบลำแสงให้พุ่งตรงไปตามท่อแก้ว โดยมีการกระจายแสงออกทางด้านข้างน้อยที่สุด เหมาะสำหรับในการใช้กับระยะทางไกลๆ การเดินสายใยแก้วนำแสงกับ ระยะทางที่ไกลมาก เช่น เดินทางระหว่างประเทศ ระหว่างเมือง มักใช้แบบ single mode
Multi Mode เป็นเส้นใยแก้วนำแสงที่มีลักษณะการกระจายแสง ออกด้านข้างได้ ดังนั้นจึงต้องสร้างให้มีดัชนีหักเหของแสง กับอุปกรณ์ฉาบผิวที่สัมผัสกับ cladding ให้สะท้อนกลับหมด หากการให้ดัชนีหักเหของแสงมีลักษณะทำให้แสงเลี้ยวเบนทีละน้อย เราเรียกว่าแบบเกรดอินเด็กซ์ หากให้แสงสะท้อนโดยไม่ปรับคุณสมบัติของแท่งแก้วให้แสงค่อยเลี้ยวเบนก็เรียกว่าแบบ สเต็ปอินเดกซ์ เส้นใยแก้วนำแสงที่ใช้ในเครือข่ายแลน ส่วนใหญ่ใช้แบบมัลติโหมด โดยเป็นขนาด 62.5/125 ไมโครเมตร หมายถึงเส้นผ่าศูนย์กลางของท่อแก้ว 62.5 ไมโครเมตร และของเคลดดิงรวมท่อแก้ว 125 ไมโครเมตร คุณสมบัติของเส้นใยแก้วนำแสงแบบ Step Index มีการสูญเสียสูงกว่าแบบ Grad Index
ตัวส่งแสงและรับแสง การใช้เส้นใยแก้วนำแสงจำเป็นต้องมีอุปกรณ์ที่ทำหน้าที่รับและส่งสัญญาณแสง อุปกรณ์ที่ทำหน้าที่ในการส่งสัญญาณแสงคือ LED หรือเลเซอร์ไดโอด อุปกรณ์ส่งแสงนี้ทำหน้าที่เปลี่ยนคลื่นไฟฟ้าให้เป็นคลื่นแสง ส่วนอุปกรณ์รับแสงและเปลี่ยนกลับมาเป็นสัญญาณไฟฟ้า คือ โฟโต้ไดโอด อุปกรณ์ส่งแสงหรือ LED ใช้พลังงานเพียง 45 ไมโครวัตต์ สำหรับใช้กับ เส้นใยแก้วนำแสงแบบ 62.5/125 การพิจารณาอุปกรณ์นี้ต้องดูที่แถบคลื่นแสง โดยปกติใช้คลื่นแสงย่าน ความยาวคลื่นประมาณ 830 ถึง 850 นาโนเมตร หรือมีแถบกว้างประมาณ 25-40 นาโนเมตร ดังนั้นข้อกำหนดเชิงพิกัดของเส้นใยแก้วนำแสงจึงกล่าวถึงความยาวคลื่นแสงที่ใช้ในย่าน 850 นาโนเมตร ตัวรับแสงไฟ หรือโฟโต้ไดโอดเป็นอุปกรณ์ที่ใช้รับแสง และมีความไวต่อความเข้มแสง คลื่นแสงที่ส่งมามีการมอดูเลตสัญญาณข้อมูลเข้า ไปร่วมด้วย อุปกรณ์ตัวรับและตัวส่งนี้มักทำมาเป็นโมดูล โดยเฉพาะเชื่อมต่อเข้ากับสัญญาณข้อมูลที่เป็นไฟฟ้าได้โดยตรง และทำให้สะดวก ต่อการใช้งาน

การเชื่อมต่อและหัวต่อ ที่ปลายสายแต่ละเส้นจะมีหัวต่อที่ใช้เชื่อมต่อกับเส้นใยแก้วนำแสง แสงจะผ่านหัวต่อไปยังอีกหัวต่อโดยเสมือนเชื่อมต่อกันเป็นเส้นเดียว เมื่อเอาเส้นใยแก้วมาเข้าหัว ที่ปลายแก้วจะมีลักษณะที่ส่งสัญญาณแสงออกมาได้ และต้องทำให้กำลังสูญเสียต่ำที่สุด ดังนั้นจึงมีวิธีที่ จะทำให้ปลายท่อแก้วราบเรียบ ที่จะเชื่อมสัญญาณแสงต่อไปได้ ดังนั้น ก่อนที่จะเข้าหัวต่อจึงต้องมีการฝนปลายท่อแก้ว วิธีการฝนปลาย ท่อแก้วนี้มีหลายวิธี เช่น การฝนแบบแบนราบ (Flat) การฝนแบบ PC และแบบ APC แต่ละแบบ

การกระทำแต่ละแบบจะให้การลดทอนสัญญาณต่างกัน และยังต้องให้มีแสงสะท้อนกลับน้อยที่สุดเท่าที่จะน้อยได้ ลักษณะของหัวต่อ เมื่อเชื่อมถึงกันแล้ว จะต้องให้ผิวสัมผัสการส่งแสงส่องทะลุถึงกัน เพื่อให้กำลังสูญเสียความเข้มแสงน้อยที่สุด โดยปกติหัวต่อที่ทำการฝน แบบแบนราบมีกำลังสูญเสียสูงกว่าแบบอื่น คือ ประมาณ -30 dB แบบ PC มีการสูญเสียประมาณ -40 dB และแบบ APC มีการสูญเสียความเข้มน้อยที่สุด คือ -50 dB ลักษณะของหัวต่อเมื่อเชื่อมต่อถึงกัน

การประยุกต์ใช้เส้นใยแก้วนำแสง แนวโน้มการใช้งานเส้นใยแก้วนำแสงได้เป็นรูปธรรมที่เด่นชัดขึ้น ทั้งนี้เพราะมีผู้พัฒนาเทคโนโลยีให้รองรับกับการใช้เส้นใยแก้วนำแสง โดยเน้นที่ความเร็วของการรับส่งสัญญาณ เส้นใยแก้วนำแสงมีข้อเด่นในเรื่องความเชื่อถือสูง เพราะปราศจากการรบกวน อีกทั้งยังสามารถ ใช้กับเทคโนโลยีได้หลากหลาย และรองรับสิ่งที่จะเกิดใหม่อนาคตได้มาก ตัวอย่างการใช้งานต่อไปนี้เป็นรูปแบบให้เห็นตัวอย่างของการประยุกต์ใช้ในอาคาร ในสำนักงาน โดยสามารถเดินสายสัญญาณด้วย เส้นใยแก้วนำแสงตามมาตรฐานสากล คือ มีสายในแนวดิ่ง และสายในแนวราบ สายในแนวดิ่งเชื่อมโยงระหว่างชั้น ส่วนสายในแนวราบ เป็นการเชื่อมจากผู้ใช้มาที่ชุมสายแต่ละชั้น รูปแบบไดอะแกรมการเดินสายทั่วไป
จากลักษณะของการเดินสายตามมาตรฐาน EIA 568 นี้ สามารถนำมาใช้กับเทคโนโลยีต่างๆได้มาก เช่น
การใช้เทคโนโลยี 10BASE F การใช้ Ethernet แบบ 10BASE F เป็นมาตรฐานที่ออกแบบมาให้ใช้กับเทคโนโลยี Ethernet โดยตรง ความเร็วสัญญาณยังคงอยู่ที่ 10 เมกะบิต และหากเป็น 10BASE F ก็เป็นความเร็ว 10 เมกะบิต ขณะนี้มีการพัฒนาระบบ Ethernet ให้เป็นแบบ Gigabit Ethernet หรือความเร็วสัญญาณอยู่ที่ 1,000 เมกะบิต การเดินสายด้วยเส้นใยแก้วนำแสง มีลักษณะเหมือนกับสายยูทีพี โดยใช้ชิปเป็นตัวกระจายพอร์ตต่างๆ
FDDI เทคโนโลยีมีใช้มานานแล้ว เป็นเทคโนโลยีที่มีความเร็วของ สัญญาณที่ 100 เมกะบิต และใช้สายสัญญาณเป็นเส้นใยแก้วนำแสง มีโครงสร้างเป็นวงแหวน สองชั้น และแตกกระจายออก การเดินสายสัญญาณตามมาตรฐาน EIA 568 ก็จัดให้เข้ากับ FDDI ได้ง่าย FDDI มีข้อดี คือ สามารถเชื่อมโยงเครื่อข่าย ระยะไกลได้ มีจำนวนโหนดบน FDDI ได้ถึง 1,000 โหนด การจัดโครงสร้างต่างๆของ FDDI สามารถทำผ่านทางแพตซ์ที่เชื่อมต่อให้ได้ตามรูปที่ FDDI ต้องการ ในลูปวงแหวนหลักของ FDDI ต้องการวงแหวนสองชั้น ซึ่งก็ต้องใช้เส้นใยแก้วนำแสงทั้งหมด 4 ลำแสง FDDI ยังเป็นเครือข่ายหลัก (Backbone) เพื่อเชื่อมต่อไปยังเครือข่ายอื่นได้ เช่น เชื่อมต่อกับ Ethernet กับ Token Ring ไดอะแกรมของ FDDI แสดงดังรูปที่ 8
ATM เป็นเทคโนโลยีที่พัฒนามาเพื่อรองรับการใช้งานที่ความเร็วสูง มาก ATM สามารถใช้ได้กับความเร็ว 155 เมกะบิต 622 เมกะบิต และสูงเกินกว่ากิกะบิตในอนาคต โครงสร้างการเดินสาย ATM มีลักษณะแบบดาว เป็นโครงสร้างการกระจายสายสัญญาณ ซึ่งตรงกับสภาพการใช้เส้นใยแก้วนำแสงอยู่แล้ว ลักษณะของแพตซ์และการกระจายสายสัญญาณเพื่อใช้กับเส้นใยแก้วนำแสง ในลักษณะที่ปรับเปลี่ยนเข้ากับเทคโนโลยีต่างๆ การวางโครงสร้างของสายสัญญาณเส้นใยแก้วจึงไม่แตกต่าง กับสายยูทีพี
อนาคตต้องเป็นเส้นใยแก้วนำแสง ถึงแม้ว่าเทคโนโลยีในปัจจุบัน มีการใช้งานสาย UTP อย่างแพร่หลาย และได้ประโยชน์มหาศาล แต่จากการพัฒนาเทคโนโลยีที่ต้องการ ให้ถนนของข้อมูลข่าวสารเป็นถนนขนาดใหญ่ ที่เรียกว่าซุปเปอร์ไฮเวย์ การรองรับข้อมูลจำนวนมาก และการประยุกต์ในรูปแบบมัลติมีเดีย ที่กำลังจะเกิดขึ้น ย่อมต้องทำให้สภาพการใช้ข้อมูลข่าวสาร ต้องพัฒนาให้รองรับกับจำนวนปริมาณ ข้อมูลที่จะมีมากขึ้น จึงเชื่อแน่ว่าเส้นใยแก้วนำแสงจะเป็นสายสัญญาณที่จะก้าวเข้ามาในยุคต่อไป และจะมีบทบาทเพิ่ทสูงขึ้น ซึ่งเมื่อถึงเวลานั้นแล้ว เราคงจะได้เห็นอาคารบ้านเรือน สำนักงาน หรือโรงงาน มีเส้นใยแก้วนำแสงเดินกระจายกันทั่ว เหมือนกับที่เห็นสายไฟฟ้ากำลังอยู่ในขณะนี้ และเหตุการณ์เหล่านี้คงจะเกิดขึ้นในอีกไม่นานนัก

ไม่มีความคิดเห็น: